If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5x^2-18+6=-3
We move all terms to the left:
5x^2-18+6-(-3)=0
We add all the numbers together, and all the variables
5x^2-9=0
a = 5; b = 0; c = -9;
Δ = b2-4ac
Δ = 02-4·5·(-9)
Δ = 180
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{180}=\sqrt{36*5}=\sqrt{36}*\sqrt{5}=6\sqrt{5}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-6\sqrt{5}}{2*5}=\frac{0-6\sqrt{5}}{10} =-\frac{6\sqrt{5}}{10} =-\frac{3\sqrt{5}}{5} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+6\sqrt{5}}{2*5}=\frac{0+6\sqrt{5}}{10} =\frac{6\sqrt{5}}{10} =\frac{3\sqrt{5}}{5} $
| 9x+18=(5+7x)+15 | | x^2+7x−9=7x+55 | | x²=3x | | 1=6/x+x/6 | | C^2-4c=6 | | 0=1-6/x-x/6 | | 2r^2=-13r-6 | | 16x+39+x=90 | | 2r^=-13r-6 | | -4/5x+4=-4 | | -(2x+3)-5=-1x-(x+8) | | f(3)=4/5(3)-2 | | -6+3/4x=-3 | | 640=1/2m10*10 | | -5+3/2x=1 | | 2x(3x+2x)=312 | | 8+2/3x=10 | | 20=4*7+b | | 90+(5x-14)=180 | | -16=3*5-d | | (2x=3)+(x-6)=90 | | 5t^2-9t=2 | | 7/10=h/3 | | 90+(9x+16)+(5x-14)=180 | | 8z=z+7z | | 7x+1+x+12=109 | | 61+×+12=4x-6 | | 2y-18+6=20 | | X²+y²8y=33 | | 61+x+12=4x-6 | | 7x-3/9=8-2x | | 4x-6+x+12=61 |